Search results
Results From The WOW.Com Content Network
Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.
If V is finite-dimensional then, relative to some basis for V, a bilinear form is degenerate if and only if the determinant of the associated matrix is zero – if and only if the matrix is singular, and accordingly degenerate forms are also called singular forms.
An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...
A vector v, with matrix representation x, is in the radical of a bilinear form with matrix representation A, if and only if Ax = 0 ⇔ x T A = 0. The radical is always a subspace of V. It is trivial if and only if the matrix A is nonsingular, and thus if and only if the bilinear form is nondegenerate. Suppose W is a subspace.
The only non-singular idempotent matrix is the identity matrix; that is, if a non-identity matrix is idempotent, its number of independent rows (and columns) is less than its number of rows (and columns).
Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...
1. The unoriented incidence matrix of a bipartite graph, which is the coefficient matrix for bipartite matching, is totally unimodular (TU). (The unoriented incidence matrix of a non-bipartite graph is not TU.) More generally, in the appendix to a paper by Heller and Tompkins, [2] A.J. Hoffman and D. Gale prove the following.
When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T.