Ad
related to: simplify derivative calculator
Search results
Results From The WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] () ′ = ′ ′ = () ′.
In mathematical finance, the Greek λ is the logarithmic derivative of derivative price with respect to underlying price. [citation needed] In numerical analysis, the condition number is the infinitesimal relative change in the output for a relative change in the input, and is thus a ratio of logarithmic derivatives. [citation needed]
The calculator can evaluate and simplify algebraic expressions symbolically. For example, entering x^2-4x+4 returns x 2 − 4 x + 4 {\displaystyle x^{2}-4x+4} . The answer is " prettyprinted " by default; that is, displayed as it would be written by hand (e.g. the aforementioned x 2 − 4 x + 4 {\displaystyle x^{2}-4x+4} rather than x^2-4x+4 ).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
7.2 Derivatives of logarithmic functions. ... and simplifying gives ... This identity is useful to evaluate logarithms on calculators.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.