When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DNA supercoil - Wikipedia

    en.wikipedia.org/wiki/DNA_supercoil

    A negatively supercoiled DNA molecule will produce either a one-start left-handed helix, the toroid, or a two-start right-handed helix with terminal loops, the plectoneme. Plectonemes are typically more common in nature, and this is the shape most bacterial plasmids will take.

  3. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Twists are the number of times the two strands of DNA are twisted around each other. Writhes are number of times the DNA helix crosses over itself. DNA in cells is negatively supercoiled and has the tendency to unwind. Hence the separation of strands is easier in negatively supercoiled DNA than in relaxed DNA.

  4. Nick (DNA) - Wikipedia

    en.wikipedia.org/wiki/Nick_(DNA)

    The diagram shows the effects of nicks on intersecting DNA in a twisted plasmid. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. [2] The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a).

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    With DNA in its "relaxed" state, a strand usually circles the axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. [43] If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together.

  6. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    But many molecular biological processes can induce torsional strain. A DNA segment with excess or insufficient helical twisting is referred to, respectively, as positively or negatively supercoiled. DNA in vivo is typically negatively supercoiled, which facilitates the unwinding (melting) of the double-helix required for RNA transcription.

  7. Reverse gyrase - Wikipedia

    en.wikipedia.org/wiki/Reverse_gyrase

    Where DNA gyrase forms a tetramer and is capable of cleaving a double-stranded region of DNA, reverse gyrase can only cleave single stranded DNA. [ 3 ] [ 4 ] More specifically, reverse gyrase is a member of the type IA topoisomerase class; along with the ability to relax negatively or positively supercoiled DNA [ 5 ] (which does not require ATP ...

  8. Our DNA is 99.9 percent the same as the person sitting next ...

    www.aol.com/article/2016/05/06/our-dna-is-99-9...

    When it comes to insects' DNA, humans have a bit less in common. For example, fruit flies share 61 percent of disease-causing genes with humans, which was important when NASA studied the bugs to ...

  9. Nucleoid - Wikipedia

    en.wikipedia.org/wiki/Nucleoid

    A hindrance in the free rotation of DNA might arise due to a topological constraint, causing the DNA in front of RNAP to become over-twisted (positively supercoiled) and the DNA behind RNAP would become under-twisted (negatively supercoiled).