Ad
related to: variance to mean ratio statistics
Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes. The Allan variance can be used for applications where the noise disrupts convergence. [2]
The variance-to-mean ratio, /, is another similar ratio, but is not dimensionless, and hence not scale invariant. See Normalization (statistics) for further ratios. In signal processing , particularly image processing , the reciprocal ratio μ / σ {\displaystyle \mu /\sigma } (or its square) is referred to as the signal-to-noise ratio in ...
In statistics and applications of statistics, normalization can have a range of meanings. [1] ... Note that some other ratios, such as the variance-to-mean ratio ...
The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation. In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable.
Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation. In addition to these several statistics have been developed with nominal data in mind.
In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances.In this case efficiency can be defined as the square of the coefficient of variation, i.e., [13]
where is the mean of the variate and is the mean of the variate . Under simple random sampling the bias is of the order O ( n −1 ). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean ). [ 2 ]