When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  4. Primary clustering - Wikipedia

    en.wikipedia.org/wiki/Primary_clustering

    Ordered linear probing [13] (often referred to as Robin Hood hashing [14]) is a technique for reducing the effects of primary clustering on queries. Ordered linear probing sorts the elements within each run by their hash. Thus, a query can terminate as soon as it encounters any element whose hash is larger than that of the element being queried.

  5. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    The Automatic Local Density Clustering Algorithm (ALDC) is an example of the new research focused on developing automatic density-based clustering. ALDC works out local density and distance deviation of every point, thus expanding the difference between the potential cluster center and other points.

  6. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Example: In natural language processing (NLP), k-means clustering has been integrated with simple linear classifiers for semi-supervised learning tasks such as named-entity recognition (NER). By first clustering unlabeled text data using k -means, meaningful features can be extracted to improve the performance of NER models.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  8. Linear search - Wikipedia

    en.wikipedia.org/wiki/Linear_search

    In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of

  9. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.