Search results
Results From The WOW.Com Content Network
In fluid dynamics, the lift coefficient (CL) is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to ...
Kutta–Joukowski theorem. The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated. The theorem ...
Lift conventionally acts in an upward direction in order to counter the force of gravity, but it is defined to act perpendicular to the flow and therefore can act in any direction. If the surrounding fluid is air, the force is called an aerodynamic force. In water or any other liquid, it is called a hydrodynamic force.
The Magnus effect is a phenomenon that occurs when a spinning object is moving through a fluid. A lift force acts on the spinning object and its path may be deflected in a manner not present when it is not spinning. The strength and direction of the Magnus effect is dependent on the speed and direction the of rotation of the object. [1]
The Lanchester-Prandtl lifting-line theory[1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. [2] The theory was expressed independently [3] by Frederick W. Lanchester in 1907, [4] and by Ludwig Prandtl in 1918–1919 [5] after working with Albert Betz and Max Munk.
Drag applies a force on the body in the direction of the relative flow, while lift applies a force perpendicular to the relative flow. Many machine topologies could be classified by the primary force used to extract the energy. For example, a Savonious wind turbine is a drag-based machine, while a Darrieus wind turbine and conventional ...
Center of pressure (fluid mechanics) In fluid mechanics, the center of pressure is the point on a body where a single force acting at that point can represent the total effect of the pressure field acting on the body. The total force vector acting at the center of pressure is the surface integral of the pressure vector field across the surface ...
The lift force L on a wing of area A, traveling at true airspeed v is given by =, where ρ is the density of air, and C L is the lift coefficient. The lift coefficient is a dimensionless number that depends on the wing cross-sectional profile and the angle of attack. [12] At steady flight, neither climbing nor diving, the lift force and the ...