When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre . [ 5 ] [ 6 ] If x 1 {\displaystyle x_{1}} is the initial position of an object and x 2 {\displaystyle x_{2}} is the final position, then mathematically the ...

  3. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  4. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    Professor Walter Lewin explaining one-dimensional elastic collisions. In any collision without an external force, momentum is conserved; but in an elastic collision, kinetic energy is also conserved. [1] Consider particles A and B with masses m A, m B, and velocities v A1, v B1 before collision, v A2, v B2 after collision.

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    F is a 3-flat in the eight-dimensional space of dual quaternions. This 3-flat F represents space, and the homography constructed, restricted to F, is a screw displacement of space. Let a be half the angle of the desired turn about axis r, and br half the displacement on the screw axis. Then form z = exp((a + bε)r) and z* = exp((a − bε)r ...

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...

  8. Inverse dynamics - Wikipedia

    en.wikipedia.org/wiki/Inverse_dynamics

    Kinematics; Inverse kinematics: a problem similar to Inverse dynamics but with different goals and starting assumptions.While inverse dynamics asks for torques that produce a certain time-trajectory of positions and velocities, inverse kinematics only asks for a static set of joint angles such that a certain point (or a set of points) of the character (or robot) is positioned at a certain ...

  9. Chebyshev linkage - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_linkage

    It was invented by the 19th-century mathematician Pafnuty Chebyshev, who studied theoretical problems in kinematic mechanisms. One of the problems was the construction of a linkage that converts a rotary motion into an approximate straight-line motion (a straight line mechanism ).