When.com Web Search

  1. Ad

    related to: difference between hypothesis and fact table in statistics

Search results

  1. Results From The WOW.Com Content Network
  2. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...

  3. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect. The procedure ...

  4. Statistics - Wikipedia

    en.wikipedia.org/wiki/Statistics

    A hypothesis is proposed for the statistical relationship between the two data sets, an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in ...

  5. Statistical proof - Wikipedia

    en.wikipedia.org/wiki/Statistical_proof

    Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".

  6. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]

  7. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    In addition, the concept of power is used to make comparisons between different statistical testing procedures: for example, between a parametric test and a nonparametric test of the same hypothesis. Tests may have the same size , and hence the same false positive rates, but different ability to detect true effects.

  8. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    The standard "no difference" null hypothesis may reward the pharmaceutical company for gathering inadequate data. "Difference" is a better null hypothesis in this case, but statistical significance is not an adequate criterion for reaching a nuanced conclusion which requires a good numeric estimate of the drug's effectiveness.

  9. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/.../Degrees_of_freedom_(statistics)

    Under the null hypothesis of no difference between population means (and assuming that standard ANOVA regularity assumptions are satisfied) the sums of squares have scaled chi-squared distributions, with the corresponding degrees of freedom. The F-test statistic is the ratio, after scaling by the degrees of freedom.