When.com Web Search

  1. Ads

    related to: how does ai interpret data in statistics and examples of one

Search results

  1. Results From The WOW.Com Content Network
  2. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  3. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  5. Analytics - Wikipedia

    en.wikipedia.org/wiki/Analytics

    Analytics is the systematic computational analysis of data or statistics. [1] It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. [2] Analytics also entails applying data patterns toward effective decision-making.

  6. Augmented Analytics - Wikipedia

    en.wikipedia.org/wiki/Augmented_Analytics

    Business – Businesses collect large amounts of data, daily. Some examples of types of data collected in business operations include; sales data, consumer behavior data, distribution data. An augmented analytics platform provides access to analysis of this data, which could be used in making business decisions. [1]

  7. Computational statistics - Wikipedia

    en.wikipedia.org/wiki/Computational_statistics

    Though computational statistics is widely used today, it actually has a relatively short history of acceptance in the statistics community. For the most part, the founders of the field of statistics relied on mathematics and asymptotic approximations in the development of computational statistical methodology.

  8. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3]

  9. Explainable artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Explainable_artificial...

    [16] [17] [18] Explainability is a concept that is recognized as important, but a consensus definition is not yet available; [15] one possibility is "the collection of features of the interpretable domain that have contributed, for a given example, to producing a decision (e.g., classification or regression)". [19]