When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The radius of the incircle is related to the area of the triangle. [18] The ratio of the area of the incircle to the area of the triangle is less than or equal to /, with equality holding only for equilateral triangles. [19]

  3. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The ratio of the area of the incircle to the area of an equilateral triangle, , is larger than that of any non-equilateral triangle. [ 37 ] The ratio of the area to the square of the perimeter of an equilateral triangle, 1 12 3 , {\displaystyle {\frac {1}{12{\sqrt {3}}}},} is larger than that for any other triangle.

  4. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.

  5. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  7. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    A tangential quadrilateral with its incircle. In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral.

  8. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = ⁠ a + b + c / 2 ⁠, and r is the radius of the inscribed circle, the law of cotangents states that

  9. Harcourt's theorem - Wikipedia

    en.wikipedia.org/wiki/Harcourt's_theorem

    Harcourt's theorem is a formula in geometry for the area of a triangle, as a function of its side lengths and the perpendicular distances of its vertices from an arbitrary line tangent to its incircle. [1] The theorem is named after J. Harcourt, an Irish professor. [2]