Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Several side reactions are known to occur. In the case of ketones and especially aldehydes aldol condensations have been observed. Aldehydes with no α-hydrogens can undergo the Tishchenko reaction. [7] Finally, in some cases the alcohol generated by the reduction can be dehydrated giving an alkyl carbon.
The reaction uses a hypervalent iodine reagent [2] similar to 2-iodoxybenzoic acid to selectively and mildly oxidize alcohols to aldehydes or ketones. The reaction is commonly conducted in chlorinated solvents such as dichloromethane or chloroform. [2] The reaction can be done at room temperature and is quickly complete.
The reaction mechanism of Corey–Kim oxidation. Under Corey–Kim conditions allylic and benzylic alcohols have a tendency to evolve to the corresponding allyl and benzyl chlorides unless the alcohol activation is very quickly followed by addition of triethylamine. In fact, Corey–Kim conditions —with no addition of triethylamine— are ...
The alcohol dehydrogenases comprise a group of several isozymes that catalyse the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, and also can catalyse the reverse reaction. [19] In mammals this is a redox (reduction/oxidation) reaction involving the coenzyme nicotinamide adenine dinucleotide (NAD ...
In addition to their reduction to alcohols, aldehydes and ketones can be converted to amines, i.e., reductive amination. [18] Because of its cyano substituent, NaBH 3 CN is a weak reducer at moderate pH (>4), so it preferentially reduces iminium cations that exist in the presence of carbonyls:
Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. [1] [2] This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions (room temperature, neutral pH), shorter reaction times, higher yields, simplified workups, high chemoselectivity ...
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine.Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. [1]