When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron-beam lithography - Wikipedia

    en.wikipedia.org/wiki/Electron-beam_lithography

    A scanning probe can be used for low-energy electron beam lithography, offering sub-100 nm resolution, determined by the dose of low-energy electrons. Another alternative in electron-beam lithography is to use extremely high electron energies (at least 100 keV) to essentially "drill" or sputter the material.

  3. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    The beam from a laser with near-ideal beam propagation properties may be described as being diffraction-limited. A diffraction-limited laser beam, passed through diffraction-limited optics, will remain diffraction-limited, and will have a spatial or angular extent essentially equal to the resolution of the optics at the wavelength of the laser.

  4. Scanning electron microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_electron_microscope

    Instead, the spatial resolution of the SEM depends on the size of the electron spot, which in turn depends on both the wavelength of the electrons and the electron-optical system that produces the scanning beam. The resolution is also limited by the size of the interaction volume, the volume of specimen material that interacts with the electron ...

  5. Spectral resolution - Wikipedia

    en.wikipedia.org/wiki/Spectral_resolution

    The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum.It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as =, where is the smallest difference in wavelengths that can be distinguished at a wavelength of .

  6. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.

  7. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a ...

  8. X-ray photoelectron spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_photoelectron...

    XPS physics - the photoelectric effect.. Because the energy of an X-ray with particular wavelength is known (for Al K α X-rays, E photon = 1486.7 eV), and because the emitted electrons' kinetic energies are measured, the electron binding energy of each of the emitted electrons can be determined by using the photoelectric effect equation,

  9. Electron scattering - Wikipedia

    en.wikipedia.org/wiki/Electron_scattering

    The Compton effect can be understood as high-energy photons scattering in-elastically off individual electrons, [26] when the incoming photon gives part of its energy to the electron, then the scattered photon has lower energy and lower frequency and longer wavelength according to the Planck relation: [28]