Search results
Results From The WOW.Com Content Network
A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example ...
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy.
The following state functions are of primary concern in chemical thermodynamics: Internal energy (U) Enthalpy (H) Entropy (S) Gibbs free energy (G) Most identities in chemical thermodynamics arise from application of the first and second laws of thermodynamics, particularly the law of conservation of energy, to these state functions.
In mechanical systems, the position coordinates and velocities of mechanical parts are typical state variables; knowing these, it is possible to determine the future state of the objects in the system. In thermodynamics, a state variable is an independent variable of a state function.
Thermodynamic temperature is a specifically thermodynamic concept, while the original directly measureable state variables are defined by ordinary physical measurements, without reference to thermodynamic concepts; for this reason, it is helpful to regard thermodynamic temperature as a state function.
The standard state for liquids and solids is simply the state of the pure substance subjected to a total pressure of 10 5 Pa (or 1 bar). For most elements, the reference point of Δ f H ⦵ = 0 is defined for the most stable allotrope of the element, such as graphite in the case of carbon , and the β-phase ( white tin ) in the case of tin .
In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration. In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.
[5] In thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy. [6] A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8]