Search results
Results From The WOW.Com Content Network
Astrocytes (green) in the context of neurons (red) in a mouse cortex cell culture 23-week-old fetal brain culture human astrocyte Astrocytes (red-yellow) among neurons (green) in the living cerebral cortex. Astrocytes are a sub-type of glial cells in the central nervous system. They are also known as astrocytic glial cells.
Reactive astrogliosis is a spectrum of changes in astrocytes that occur in response to all forms of CNS injury and disease. Changes due to reactive astrogliosis vary with the severity of the CNS insult along a graduated continuum of progressive alterations in molecular expression, progressive cellular hypertrophy, proliferation and scar formation.
In general, there are two types of astrocytes, protoplasmic and fibrous, similar in function but distinct in morphology and distribution. Protoplasmic astrocytes have short, thick, highly branched processes and are typically found in gray matter. Fibrous astrocytes have long, thin, less-branched processes and are more commonly found in white ...
Foot-like processes are also present in Müller glia (modified astrocytes of the retina), [3] pancreatic stellate cells, [4] dendritic cells, [5] oligodendrocytes, [6] and others. Microglia , which are notably smaller than macroglia , can also extend their end-processes to contact areas of capillaries that are devoid of astrocyte endfeet , and ...
These cells (and other neuroglia including astrocytes) are distributed in large non-overlapping regions throughout the CNS. [5] [6] Microglia are key cells in overall brain maintenance – they are constantly scavenging the CNS for plaques, damaged or unnecessary neurons and synapses, and infectious agents. [7]
Evidence for the role of astrocytes in the integration and processing of synaptic integration presents itself in a number of ways: Astrocytes are excitable cells: In response to stimuli from any of the three components of the tripartite synapse, astrocytes are capable of producing transient changes in their intracellular calcium concentrations through release of calcium stores from the ...
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...
Since Bergmann glia appear to persist in the cerebellum, and perform many of the roles characteristic of astrocytes, they have also been called "specialized astrocytes." [9] Bergmann glia have multiple radial processes that extend across the molecular layer of the cerebellar cortex and terminate at the pial surface as a bulbous endfoot. [11]