When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  3. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.

  5. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    For example, terrestrial air is primarily made up of diatomic gases (around 78% nitrogen, N 2, and 21% oxygen, O 2), and at standard conditions it can be considered to be an ideal gas. The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of ...

  6. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  7. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...

  8. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R. In that case, the specific volume would equal 0.4672 in 3 /lb.

  9. Van der Waals constants (data page) - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_constants...

    Nitrogen: 1.370 0.0387 Nitrogen dioxide: 5.354 0.04424 Nitrogen trifluoride [2] 3.58 0.0545 Nitrous oxide: 3.832 0.04415 Octane [2] 37.88 0.2374 1-Octanol [2] 44.71 0.2442 Oxygen: 1.382 0.03186 Ozone [2] 3.570 0.0487 Pentane: 19.26 0.146 1-Pentanol [2] 25.88 0.1568 Phenol [2] 22.93 0.1177 Phosphine: 4.692 0.05156 Propane: 8.779 0.08445 1 ...