Search results
Results From The WOW.Com Content Network
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
There are several different notations used to represent different kinds of inequalities: The notation a < b means that a is less than b. The notation a > b means that a is greater than b. In either case, a is not equal to b. These relations are known as strict inequalities, [1] meaning that a is strictly less than or strictly greater than b ...
3. In set-builder notation, it is used as a separator meaning "such that"; see { : }. / 1. Denotes division and is read as divided by or over. Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure.
an asymptotic lower bound notation related to big O notation; in probability theory and statistical mechanics, the support; a solid angle [79] [80] the omega baryon; the arithmetic function counting a number's prime factors counted with multiplicity; the density parameter in cosmology [81] the first uncountable ordinal (also written as ω 1) [82]
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
Hardy's inequality is an inequality in mathematics, named after G. H. Hardy. Its discrete version states that if a 1 , a 2 , a 3 , … {\displaystyle a_{1},a_{2},a_{3},\dots } is a sequence of non-negative real numbers , then for every real number p > 1 one has
The notation is also used to denote the characteristic function in convex analysis, which is defined as if using the reciprocal of the standard definition of the indicator function. A related concept in statistics is that of a dummy variable .