Search results
Results From The WOW.Com Content Network
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
One-element networks are trivial and two-element, [note 3] two-terminal networks are either two elements in series or two elements in parallel, also trivial. The smallest number of elements that is non-trivial is three, and there are two 2-element-kind non-trivial transformations possible, one being both the reverse transformation and the topological dual, of the other.
An n-terminal network can, at best, be reduced to n impedances (at worst ()). For a three terminal network, the three impedances can be expressed as a three node delta (Δ) network or four node star (Y) network. These two networks are equivalent and the transformations between them are given below.
Simple resistive network with three possible port arrangements: (a) Pole pairs (1, 2) and (3, 4) are ports; (b) pole pairs (1, 4) and (2, 3) are ports; (c) no pair of poles are ports Any node of a circuit that is available for connection to an external circuit is called a pole (or terminal if it is a physical object).
In particular, for networks which contain only two-terminal devices, circuit topology can be viewed as an application of graph theory. In a network analysis of such a circuit from a topological point of view, the network nodes are the vertices of graph theory, and the network branches are the edges of graph theory.
In 1933, A. T. Starr published a generalization of Thévenin's theorem in an article of the magazine Institute of Electrical Engineers Journal, titled A New Theorem for Active Networks, [13] which states that any three-terminal active linear network can be substituted by three voltage sources with corresponding impedances, connected in wye or ...
Bode, Hendrik, Network Analysis and Feedback Amplifier Design, pp. 360–371, D. Van Nostrand Company, 1945 OCLC 1078811368. Brune, Otto, "Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency", MIT Journal of Mathematics and Physics, vol. 10, pp. 191–236, April 1931.
Network synthesis is the process of deriving a circuit to match a chosen transfer function. Not all transfer functions can be realized by physical networks, but for those that can, the lattice network is always a solution. In other words, if a symmetrical two-terminal pair network is realizable at all, it is realizable as a lattice network.