Search results
Results From The WOW.Com Content Network
The Weber test is administered by holding a vibrating tuning fork on top of the patient's head. The Weber test is a screening test for hearing performed with a tuning fork. [1] [2] It can detect unilateral (one-sided) conductive hearing loss (middle ear hearing loss) and unilateral sensorineural hearing loss (inner ear hearing loss). [3]
Hearing aids are electroacoustic devices which are designed to amplify sound for the wearer, usually with the aim of making speech more intelligible, and to correct impaired hearing as measured by audiometry. Some technologies also worth noting are cochlear implants and bone-anchored hearing aids (BAHA), which serve a similar purpose to hearing ...
Weber test, in which a tuning fork is touched to the midline of the forehead, localizes to the normal ear in people with unilateral sensorineural hearing loss. Rinne test, which tests air conduction vs. bone conduction is positive, because both bone and air conduction are reduced equally. less common Bing and Schwabach variants of the Rinne test.
A hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies. There are other hearing tests as well, e.g., Weber test and Rinne test.
The severity of a hearing loss is ranked according to ranges of nominal thresholds in which a sound must be so it can be detected by an individual. It is measured in decibels of hearing loss, or dB HL. The measurement of hearing loss in an individual is conducted over several frequencies, mostly 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. The hearing ...
Hearing loss is a partial or total inability to hear. [5] Hearing loss may be present at birth or acquired at any time afterwards. [6] [7] Hearing loss may occur in one or both ears. [2] In children, hearing problems can affect the ability to acquire spoken language, and in adults it can create difficulties with social interaction and at work. [8]
Most hydrographic operations use a 200 kHz transducer, which is suitable for inshore work up to 100 metres in depth. Deeper water requires a lower frequency transducer as the acoustic signal of lower frequencies is less susceptible to attenuation in the water column. Commonly used frequencies for deep water sounding are 33 kHz and 24 kHz.
The shape of the plot reveals the degree and nature of hearing loss, distinguishing conductive hearing loss from other kinds of hearing loss. A conductive hearing loss is characterized by a difference of at least 15 decibels between the air conduction threshold and bone conduction threshold at the same frequency. On an audiogram, the "x ...