Search results
Results From The WOW.Com Content Network
Collision frequency describes the rate of collisions between two atomic or molecular species in a given volume, per unit time. In an ideal gas , assuming that the species behave like hard spheres, the collision frequency between entities of species A and species B is: [ 1 ]
The plasma collisionality is defined as [4] [5] =, where denotes the electron-ion collision frequency, is the major radius of the plasma, is the inverse aspect-ratio, and is the safety factor. The plasma parameters m i {\displaystyle m_{\mathrm {i} }} and T i {\displaystyle T_{\mathrm {i} }} denote, respectively, the mass and temperature of the ...
The equation loses accuracy for gaps under about 10 μm in air at one atmosphere [9] and incorrectly predicts an infinite arc voltage at a gap of about 2.7 μm. Breakdown voltage can also differ from the Paschen curve prediction for very small electrode gaps, when field emission from the cathode surface becomes important.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material, v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and; μ e is the electron mobility.
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.
The Spitzer resistivity is a classical model of electrical resistivity based upon electron-ion collisions and it is commonly used in plasma physics. [3] [4] [5] [6 ...