Search results
Results From The WOW.Com Content Network
For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with ...
It can also happen during mitotic division, [1] which may result in loss of heterozygosity. Crossing over is important for the normal segregation of chromosomes during meiosis. [ 2 ] Crossing over also accounts for genetic variation, because due to the swapping of genetic material during crossing over, the chromatids held together by the ...
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes ...
Note that chromosome 21 is present in 3 copies, while all other chromosomes show the normal diploid state with 2 copies. Most cases of trisomy of chromosome 21 are caused by a nondisjunction event during meiosis I (see text). Down syndrome, a trisomy of chromosome 21, is the most common anomaly of chromosome number in humans. [2]
The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. [2]
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
Most recombination occurs naturally and can be classified into two types: (1) interchromosomal recombination, occurring through independent assortment of alleles whose loci are on different but homologous chromosomes (random orientation of pairs of homologous chromosomes in meiosis I); & (2) intrachromosomal recombination, occurring through ...
The grasshopper Melanoplus femurrubrum was exposed to an acute dose of X-rays during each individual stage of meiosis, and chiasma frequency was measured. [7] Irradiation during the leptotene-zygotene stages of meiosis, that is, prior to the pachytene period in which crossover recombination occurs, was found to increase subsequent chiasma ...