Search results
Results From The WOW.Com Content Network
In thermodynamics, vapor quality is the mass fraction in a saturated mixture that is vapor; [1] in other words, saturated vapor has a "quality" of 100%, and saturated liquid has a "quality" of 0%. Vapor quality is an intensive property which can be used in conjunction with other independent intensive properties to specify the thermodynamic ...
The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some thermodynamic variable (such as temperature or pressure) leads to separation of the mixture into two ...
Using mass and enthalpy balances in addition to vapor-liquid equilibrium data and enthalpy-concentration data, operating lines can be constructed using the Ponchon–Savarit method. [ 5 ] If the mixture can form an azeotrope , its vapor-liquid equilibrium line will cross the x = y line, preventing further separation no matter the number of ...
Additionally, the solution of the Cahn–Hilliard equation for a binary mixture is reasonably comparable with the solution of a Stefan problem. [11] In this comparison, the Stefan problem was solved using a front-tracking, moving-mesh method with homogeneous Neumann boundary conditions at the outer boundary. Also, Stefan problems can be applied ...
It soon became desirable to obtain an equation that would also model well the Vapor–liquid equilibrium (VLE) properties of fluids, in addition to the vapor-phase properties. [10] Perhaps the best known application of the Redlich–Kwong equation was in calculating gas fugacities of hydrocarbon mixtures, which it does well, that was then used ...
This quality is defined as the fraction of the total mixture which is vapor, based on mass. [3] A fully saturated vapor has a quality of 100% while a saturated liquid has a quality of 0%. Quality can be estimated graphically as it is related to the specific volume, or how far horizontally across the dome the point exists.
VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.
Experiments show that if the volume of a vessel containing a fixed amount of liquid is heated and expands at constant temperature, at a certain pressure, (), vapor, (denoted by dots at points and in Fig. 1) bubbles nucleate so the fluid is no longer homogeneous, but rather it has become a heterogeneous mixture of boiling liquid and condensing ...