Ad
related to: csc graph vertices formula sheet calculator area of square
Search results
Results From The WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G 2 is called the square of G, G 3 is called the cube of G, etc. [1] Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.
A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.
The subdivision of the polygon into triangles forms a planar graph, and Euler's formula + = gives an equation that applies to the number of vertices, edges, and faces of any planar graph. The vertices are just the grid points of the polygon; there are = + of them. The faces are the triangles of the subdivision, and the single region of the ...
In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph. [5] Square centered Schlegel diagram
The nested triangles graph requires this much area no matter how it is embedded, [2] and several methods are known that can draw planar graphs with at most quadratic area. [ 3 ] [ 4 ] Binary trees , and trees of bounded degree more generally, have drawings with linear or near-linear area, depending on the drawing style.
A square's area is [10] = =. This formula for the area of a square as the second power of its side length led to the use of the term squaring to mean raising any number to the second power. [12] Reversing this relation, the side length of a square of a given area is the square root of the
Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.