Search results
Results From The WOW.Com Content Network
The first computer to support paging was the supercomputer Atlas, [9] [10] [11] jointly developed by Ferranti, the University of Manchester and Plessey in 1963. The machine had an associative (content-addressable) memory with one entry for each 512 word page.
If a reader wanted to find, for example, the 5,000th word in the book, they could count from the first word. This would be time-consuming. It would be much faster if the reader had a listing of how many words are on each page. From this listing they could determine which page the 5,000th word appears on, and how many words to count on that page.
The theoretically optimal page replacement algorithm (also known as OPT, clairvoyant replacement algorithm, or Bélády's optimal page replacement policy) [3] [4] [2] is an algorithm that works as follows: when a page needs to be swapped in, the operating system swaps out the page whose next use will occur farthest in the future. For example, a ...
The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.While building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept.
A 68451 MMU, which could be used with the Motorola 68010. A memory management unit (MMU), sometimes called paged memory management unit (PMMU), [1] is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory.
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only when an attempt is made to access it and that page is not already in memory ( i.e. , if a page fault occurs).
The page table is a key component of virtual address translation that is necessary to access data in memory. The page table is set up by the computer's operating system, and may be read and written during the virtual address translation process by the memory management unit or by low-level system software or firmware.
In computing, a page fault is an exception that the memory management unit (MMU) raises when a process accesses a memory page without proper preparations. Accessing the page requires a mapping to be added to the process's virtual address space. Furthermore, the actual page contents may need to be loaded from a back-up, e.g. a disk.