Search results
Results From The WOW.Com Content Network
This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image. In this project three applications are taken into account and using Matlab with image processing toolbox the count and density values are calculated for each.
Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.
The projective linear group of n-space = (+) has (n + 1) 2 − 1 dimensions (because it is (,) = ((+,)), projectivization removing one dimension), but in other dimensions the projective linear group is only 2-transitive – because three collinear points must be mapped to three collinear points (which is not a restriction in the projective line ...
For finite-dimensional real vectors in with the usual Euclidean dot product, the Gram matrix is =, where is a matrix whose columns are the vectors and is its transpose whose rows are the vectors . For complex vectors in C n {\displaystyle \mathbb {C} ^{n}} , G = V † V {\displaystyle G=V^{\dagger }V} , where V † {\displaystyle V^{\dagger ...
A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.