When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fluctuation–dissipation theorem - Wikipedia

    en.wikipedia.org/wiki/Fluctuation–dissipation...

    The fluctuation–dissipation theorem says that when there is a process that dissipates energy, turning it into heat (e.g., friction), there is a reverse process related to thermal fluctuations. This is best understood by considering some examples:

  3. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics , it places a heavy emphasis on the commonalities between the topics covered.

  4. Diffuson - Wikipedia

    en.wikipedia.org/wiki/Diffuson

    This random motion is described by a differential equation, known as the diffusion equation. The diffuson is the Green's function of the diffusion equation. [1] The diffuson plays an important role in the theory of electron transport in disordered systems, especially for phase coherent effects such as universal conductance fluctuations. [3]

  5. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison ...

  6. Correlation function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Correlation_function...

    One example is in diffusion. A single-phase system at equilibrium has a homogeneous composition macroscopically. However, if one watches the microscopic movement of each atom, fluctuations in composition are constantly occurring due to the quasi-random walks taken by the individual atoms.

  7. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.

  8. Fokker–Planck equation - Wikipedia

    en.wikipedia.org/wiki/Fokker–Planck_equation

    The Fokker–Planck equation for this particle is the Smoluchowski diffusion equation: (, |,) = [(()) (, |,)] Where is the diffusion constant and =. The importance of this equation is it allows for both the inclusion of the effect of temperature on the system of particles and a spatially dependent diffusion constant.

  9. Fluctuation theorem - Wikipedia

    en.wikipedia.org/wiki/Fluctuation_theorem

    Roughly, the fluctuation theorem relates to the probability distribution of the time-averaged irreversible entropy production, denoted ¯.The theorem states that, in systems away from equilibrium over a finite time t, the ratio between the probability that ¯ takes on a value A and the probability that it takes the opposite value, −A, will be exponential in At.