Search results
Results From The WOW.Com Content Network
The pole of a line is the inversion of its closest point to the circle C, whereas the polar of a point is the converse, namely, a line whose closest point to C is the inversion of the point. The eccentricity of the conic section obtained by reciprocation is the ratio of the distances between the two circles' centers to the radius r of ...
Fixing a point yields a natural distance on : two points represented by rays , originating at are at distance ( ()). When X {\displaystyle X} is the unit disk, i.e. the Poincaré disk model for the hyperbolic plane, the hyperbolic metric on the disk is
The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.
Choose a line (the x-axis) in the hyperbolic plane (with a standardized curvature of -1) and label the points on it by their distance from an origin (x=0) point on the x-axis (positive on one side and negative on the other). For any point in the plane, one can define coordinates x and y by dropping a perpendicular onto the x-axis.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient.
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
If P 0 is taken to be the point (1, 1), P 1 the point (x 1, 1/x 1), and P 2 the point (x 2, 1/x 2), then the parallel condition requires that Q be the point (x 1 x 2, 1/x 1 1/x 2). It thus makes sense to define the hyperbolic angle from P 0 to an arbitrary point on the curve as a logarithmic function of the point's value of x. [1] [2]