Search results
Results From The WOW.Com Content Network
The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...
Then one of the alternate angles is an exterior angle equal to the other angle which is an opposite interior angle in the triangle. This contradicts Proposition 16 which states that an exterior angle of a triangle is always greater than the opposite interior angles. [5]: 307 [3]: Art. 88
In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...
A proof given by John Wellesley Russell uses Pasch's axiom to consider cases where a line does or does not meet a triangle. [4] First, the sign of the left-hand side will be negative since either all three of the ratios are negative, the case where the line DEF misses the triangle (see diagram), or one is negative and the other two are positive, the case where DEF crosses two sides of the ...
If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side. [1]: pp. 261–264
Exterior angles can be also defined, and the Euclidean triangle postulate can be formulated as the exterior angle theorem. One can also consider the sum of all three exterior angles, that equals to 360° [9] in the Euclidean case (as for any convex polygon), is less than 360° in the spherical case, and is greater than 360° in the hyperbolic case.
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each equal to ( n -1) π {\displaystyle \pi } . [ 4 ]