Search results
Results From The WOW.Com Content Network
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
In 1806, Jean-Robert Argand introduced the term module, meaning unit of measure in French, specifically for the complex absolute value, [1] [2] and it was borrowed into English in 1866 as the Latin equivalent modulus. [1] The term absolute value has been used in this sense from at least 1806 in French [3] and 1857 in English. [4] The notation ...
For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1. (This interval can also be denoted by ]0, 1[, see below). The open interval (0, +∞) consists of real numbers greater than 0, i.e., positive real numbers. The open intervals are thus one of the forms
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The extremal equality is one of the ways for proving the triangle inequality ‖ f 1 + f 2 ‖ p ≤ ‖ f 1 ‖ p + ‖ f 2 ‖ p for all f 1 and f 2 in L p (μ), see Minkowski inequality. Hölder's inequality implies that every f ∈ L p (μ) defines a bounded (or continuous) linear functional κ f on L q (μ) by the formula