When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    Cutting-stock problems can be classified in several ways. [1] One way is the dimensionality of the cutting: the above example illustrates a one-dimensional (1D) problem; other industrial applications of 1D occur when cutting pipes, cables, and steel bars. Two-dimensional (2D) problems are encountered in furniture, clothing and glass production.

  3. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    Similarly, every cut of reals is identical to the cut produced by a specific real number (which can be identified as the smallest element of the B set). In other words, the number line where every real number is defined as a Dedekind cut of rationals is a complete continuum without any further gaps.

  4. Cutting sequence - Wikipedia

    en.wikipedia.org/wiki/Cutting_sequence

    The Fibonacci word is an example of a Sturmian word.The start of the cutting sequence shown here illustrates the start of the word 0100101001. In digital geometry, a cutting sequence is a sequence of symbols whose elements correspond to the individual grid lines crossed ("cut") as a curve crosses a square grid.

  5. Elementary mathematics - Wikipedia

    en.wikipedia.org/wiki/Elementary_mathematics

    As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. Transformations are ways of shifting and scaling functions using different algebraic formulas.

  6. Manipulative (mathematics education) - Wikipedia

    en.wikipedia.org/wiki/Manipulative_(mathematics...

    It is critical that students learn math concepts using a variety of tools. For example, as students learn to make patterns, they should be able to create patterns using all three of these tools. Seeing the same concept represented in multiple ways as well as using a variety of concrete models will expand students’ understandings.

  7. Lazy caterer's sequence - Wikipedia

    en.wikipedia.org/wiki/Lazy_caterer's_sequence

    The maximum number of pieces from consecutive cuts are the numbers in the Lazy Caterer's Sequence. When a circle is cut n times to produce the maximum number of pieces, represented as p = f (n), the n th cut must be considered; the number of pieces before the last cut is f (n − 1), while the number of pieces added by the last cut is n.

  8. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.

  9. Fold-and-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Fold-and-cut_theorem

    The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).