Ads
related to: plane geometry problems with solutions pdf
Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Arithmetic problems of plane geometry" The following 13 pages are in this ...
In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane. Three given circles generically have eight different circles that are tangent to them and each solution circle encloses or excludes the three given circles in a different way: in each solution, a different subset of the ...
In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga (c. 262 BC – c. 190 BC) posed and solved this famous problem in his work Ἐπαφαί ( Epaphaí , "Tangencies"); this work has been lost , but a 4th-century AD report of his results by ...
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]
The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus. Both problems are intrinsically transcendental – they do not have closed-form analytical solutions in the Euclidean plane. The numerical answers must be obtained by an iterative approximation procedure.
The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length. [1] The closely related Dido's problem asks for a region of the maximal area bounded by a straight line and a curvilinear arc whose endpoints belong to that line.
Moser's worm problem (also known as mother worm's blanket problem) is an unsolved problem in geometry formulated by the Austrian-Canadian mathematician Leo Moser in 1966. The problem asks for the region of smallest area that can accommodate every plane curve of length 1.
Apollonius's theorem (plane geometry) Appell–Humbert theorem (complex manifold) Arakelyan's theorem (complex analysis) Area theorem (conformal mapping) (complex analysis) Arithmetic Riemann–Roch theorem (algebraic geometry) Aronszajn–Smith theorem (functional analysis) Arrival theorem (queueing theory) Arrow's impossibility theorem (game ...