When.com Web Search

  1. Ad

    related to: factoring example problems with answers

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...

  3. Computational problem - Wikipedia

    en.wikipedia.org/wiki/Computational_problem

    For example, factoring is a search problem where the instances are (string representations of) positive integers and the solutions are (string representations of) collections of primes. A search problem is represented as a relation consisting of all the instance-solution pairs, called a search relation. For example, factoring can be represented ...

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  5. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By the Dickman function , the probability that the largest factor of such a number is less than ( p − 1) 1/ε is roughly ε − ε ; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a ...

  6. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  7. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...

  8. What is a factor rate and how to calculate it - AOL

    www.aol.com/finance/factor-rate-calculate...

    Here’s an example using the $100,000 loan with a factor rate of 1.5 and a two-year (730 days) repayment period: Step 1: 1.50 – 1 = 0.50 Step 2: .50 x 365 = 182.50

  9. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    The algorithm is used to factorize a number =, where is a non-trivial factor. A polynomial modulo , called () (e.g., () = (+)), is used to generate a pseudorandom sequence.It is important to note that () must be a polynomial.