When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...

  3. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  4. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    A sphere (top), rotational ellipsoid (left) and triaxial ellipsoid (right) The volume of a sphere of radius R is .Given the volume of a non-spherical object V, one can calculate its volume-equivalent radius by setting

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    A proof of the recursion formula relating the volume of the n-ball and an (n − 2)-ball can be given using the proportionality formula above and integration in cylindrical coordinates. Fix a plane through the center of the ball. Let r denote the distance between a point in the plane and the center of the sphere, and let θ denote the

  8. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    Considered extrinsically, as a hypersurface embedded in ⁠ (+) ⁠-dimensional Euclidean space, an ⁠ ⁠-sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ⁠ ( n + 1 ) {\displaystyle (n+1)} ⁠ -dimensional ball .

  9. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.