Search results
Results From The WOW.Com Content Network
The main difference between the luminous efficacy of radiation and the luminous efficacy of a source is that the latter accounts for input energy that is lost as heat or otherwise exits the source as something other than electromagnetic radiation. Luminous efficacy of radiation is a property of the radiation emitted by a source. Luminous ...
Early on it was found that X-rays, gamma rays, and beta radiation were essentially equivalent for all cell types. Therefore, the standard radiation type X is generally an X-ray beam with 250 keV photons or cobalt-60 gamma rays. As a result, the relative biological effectiveness of beta and photon radiation is essentially 1.
Luminous energy is related to radiant energy by the expression = / ¯ (). Here λ {\displaystyle \lambda } is the wavelength of light, and y ¯ ( λ ) {\displaystyle {\overline {y}}(\lambda )} is the luminous efficiency function , which represents the eye's sensitivity to different wavelengths of light.
The theoretical-maximum efficacy lowers for wavelengths at either side of 555 nm. For example, low-pressure sodium lamps produce monochromatic light at 589 nm with a luminous efficacy of 200 lm/w, which is the highest of any lamp. The theoretical-maximum efficacy at that wavelength is 525 lm/w, so the lamp has a luminous efficiency of 38.1%.
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute. The ratio of the total luminous flux to the radiant flux is called the luminous efficacy. This model of the human visual brightness perception, is standardized by the CIE and ISO. [5]