Ad
related to: 3d shapes face edge vertices line art
Search results
Results From The WOW.Com Content Network
In 3D computer graphics and solid modeling, a polygon mesh is a collection of vertices, edge s and face s that defines the shape of a polyhedral object's surface. It simplifies rendering , as in a wire-frame model .
The truncated cubic honeycomb has two edge types, one with four truncated cubes, and the others with one octahedron, and two truncated cubes. These can be seen as two types of edge figures. These are seen as the vertices of the vertex figure. Related to the vertex figure, an edge figure is the vertex figure of a vertex figure. [3]
In computer-aided design the constructed design is represented by a boundary representation topological model, where analytical 3D surfaces and curves, limited to faces, edges, and vertices, constitute a continuous boundary of a 3D body. Arbitrary 3D bodies are often too complicated to analyze directly.
The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope.
A vertex (plural vertices) in computer graphics is a data structure that describes certain attributes, like the position of a point in 2D or 3D space, or multiple points on a surface. Application to 3D models
The edge-first parallel projection of the tesseract into three-dimensional space has an envelope in the shape of a hexagonal prism. Six cells project onto rhombic prisms, which are laid out in the hexagonal prism in a way analogous to how the faces of the 3D cube project onto six rhombs in a hexagonal envelope under vertex-first projection.
The high degree of symmetry of the Platonic solids can be interpreted in a number of ways. Most importantly, the vertices of each solid are all equivalent under the action of the symmetry group, as are the edges and faces. One says the action of the symmetry group is transitive on the vertices, edges, and faces.
In related terminology, the (n − 2)-faces of an n-polytope are called ridges (also subfacets). [10] A ridge is seen as the boundary between exactly two facets of a polytope or honeycomb. For example: The ridges of a 2D polygon or 1D tiling are its 0-faces or vertices. The ridges of a 3D polyhedron or plane tiling are its 1-faces or edges.