When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    In many cases, the asymptotic expansion is in power of a small parameter, ε: in the boundary layer case, this is the nondimensional ratio of the boundary layer thickness to a typical length scale of the problem. Indeed, applications of asymptotic analysis in mathematical modelling often [3] center around a nondimensional parameter which has ...

  3. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and physics. But asymptotic methods ...

  4. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The above example would have a child nodes at each non-leaf node. Each node does an amount of work that corresponds to the size of the subproblem n passed to that instance of the recursive call and given by (). The total amount of work done by the entire algorithm is the sum of the work performed by all the nodes in the tree.

  5. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    In a large class of singularly perturbed problems, the domain may be divided into two or more subdomains. In one of these, often the largest, the solution is accurately approximated by an asymptotic series [2] found by treating the problem as a regular perturbation (i.e. by setting a relatively small parameter to zero). The other subdomains ...

  6. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In formal mathematics, rates of convergence and orders of convergence are often described comparatively using asymptotic notation commonly called "big O notation," which can be used to encompass both of the prior conventions; this is an application of asymptotic analysis.

  7. Asymptotically optimal algorithm - Wikipedia

    en.wikipedia.org/wiki/Asymptotically_optimal...

    It is a term commonly encountered in computer science research as a result of widespread use of big-O notation. More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).

  8. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    An important example is the Gauss circle problem, which asks for integers points (x y) which satisfy x 2 + y 2 ≤ r 2 . {\displaystyle x^{2}+y^{2}\leq r^{2}.} In geometrical terms, given a circle centered about the origin in the plane with radius r , the problem asks how many integer lattice points lie on or inside the circle.

  9. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.