Search results
Results From The WOW.Com Content Network
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.
Shift work is a contributing factor in many cases of medical errors. [9] Shift work has often been common in the armed forces. Military personnel, pilots, and others that regularly change time zones while performing shift work experience jet lag and consequently suffer sleep disorders. [9]
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma.
Adiabatic work is done without matter transfer and without heat transfer. In principle, in thermodynamics, for a process in a closed system, the quantity of heat transferred is defined by the amount of adiabatic work that would be needed to effect the change in the system that is occasioned by the heat transfer.
In thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy. [6] A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8]
Ferromagnetism: A state of matter with spontaneous magnetization. Antiferromagnetism: A state of matter in which the neighboring spin are antiparallel with each other, and there is no net magnetization. Ferrimagnetism: A state in which local moments partially cancel. Altermagnetism: A state with zero net magnetization and spin-split electronic ...
Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions. Talking about quantum phase transitions means talking about transitions at T = 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or Néel temperature to 0 K.
Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as the conformity of crystals, where the material goes from conforming to one crystalline structure to conforming to another, which may be a ...