Ad
related to: orthographic to isometric converter online
Search results
Results From The WOW.Com Content Network
Isometric projection is a method for visually representing three-dimensional objects in two dimensions in technical and engineering drawings. It is an axonometric projection in which the three coordinate axes appear equally foreshortened and the angle between any two of them is 120 degrees.
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
Isometric projection corresponds to rotation of the object by ± 45° about the vertical axis, followed by rotation of approximately ± 35.264° [= arcsin(tan(30°))] about the horizontal axis starting from an orthographic projection view. "Isometric" comes from the Greek for "same measure".
Axonometric projection is further subdivided into three categories: isometric projection, dimetric projection, and trimetric projection, depending on the exact angle at which the view deviates from the orthogonal. [3] [4] A typical characteristic of orthographic pictorials is that one axis of space is usually displayed as vertical.
In isometric projection, the most commonly used form of axonometric projection in engineering drawing, [4] the direction of viewing is such that the three axes of space appear equally foreshortened, and there is a common angle of 120° between them. As the distortion caused by foreshortening is uniform, the proportionality between lengths is ...
But, as the engineer projection and the standard isometry are scaled orthographic projections, the contour of a sphere is a circle in these cases, as well. As the diagram shows, an ellipse as the contour of a sphere might be confusing, so, if a sphere is part of an object to be mapped, one should choose an orthogonal axonometry or an engineer ...
Direct application of the orthographic projection yields scattered points in (x, y), which creates problems for plotting and numerical integration. One solution is to start from the (x, y) projection plane and construct the image from the values defined in (λ, φ) by using the inverse formulas of the orthographic projection.
When = =, the projection is said to be "orthographic" or "orthogonal". Otherwise, it is "oblique". Otherwise, it is "oblique". The constants a {\displaystyle a} and b {\displaystyle b} are not necessarily less than 1, and as a consequence lengths measured on an oblique projection may be either larger or shorter than they were in space.