Search results
Results From The WOW.Com Content Network
Syntactically, (1) and (2) are derivable from each other via the rules of contraposition and double negation. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either Lisa is in Denmark is false or Lisa is in Europe is true. (Note that in this example, classical logic is assumed.
9 Difference in elapsed time as a ... acceleration is used to explain why there is any difference at ... 0.6, 2τ=4); Phase 5 (a=0, τ=2); Phase 6 (a=0.6, τ=2). ...
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
The material conditional is also notated using the infixes and . [2] In the prefixed Polish notation , conditionals are notated as C p q {\displaystyle Cpq} . In a conditional formula p → q {\displaystyle p\to q} , the subformula p {\displaystyle p} is referred to as the antecedent and q {\displaystyle q} is termed the consequent of the ...
Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
The difference of two squares can also be illustrated geometrically as the difference of two square areas in a plane. In the diagram, the shaded part represents the difference between the areas of the two squares, i.e. a 2 − b 2 {\displaystyle a^{2}-b^{2}} .
The difference between explanations and arguments reflects a difference in the kind of question that arises. In the case of arguments, we start from a doubted fact, which we try to support by arguments. In the case of explanations, we start with an accepted fact, the question being why is this fact or what caused it.