Search results
Results From The WOW.Com Content Network
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
if a number is divisible by 2, but not by 3, its square ends in 4, and its preceding digit must be 0, 1, 4, 5, 8, or 9; and; if a number is not divisible by 2, but by 3, its square ends in 9, and its preceding digit must be 0 or 6. Similar rules can be given for other bases, or for earlier digits (the tens instead of the units digit, for example).
This is an accepted version of this page This is the latest accepted revision, reviewed on 17 January 2025. Observation that in many real-life datasets, the leading digit is likely to be small For the unrelated adage, see Benford's law of controversy. The distribution of first digits, according to Benford's law. Each bar represents a digit, and the height of the bar is the percentage of ...
A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02.
Die A has sides 2, 2, 4, 4, 9, 9. Die B has sides 1, 1, 6, 6, 8, 8. Die C has sides 3, 3, 5, 5, 7, 7. The probability that A rolls a higher number than B, the probability that B rolls higher than C, and the probability that C rolls higher than A are all 5 / 9 , so this set of dice is intransitive. In fact, it has the even stronger ...
5⋅5, or 5 2 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
{1, 3, 5, 7, 9, ...; 2, 4, 6, 8, 10, ...} is an ordering of the set (with cardinality ℵ 0) of positive integers. If the axiom of countable choice (a weaker version of the axiom of choice) holds, then ℵ 0 is smaller than any other infinite cardinal, and is therefore the (unique) least infinite ordinal.