Search results
Results From The WOW.Com Content Network
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1.
Gott, Goldberg and Vanderbei’s double-sided disk map was designed to minimize all six types of map distortions. Not properly "a" map projection because it is on two surfaces instead of one, it consists of two hemispheric equidistant azimuthal projections back-to-back. [5] [6] [7] 1879 Peirce quincuncial: Other Conformal Charles Sanders Peirce
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
A medieval depiction of the Ecumene (1482, Johannes Schnitzer, engraver), constructed after the coordinates in Ptolemy's Geography and using his second map projection. In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane.
Vectors are defined in spherical coordinates by (r, θ, φ), where r is the length of the vector, θ is the angle between the positive Z-axis and the vector in question (0 ≤ θ ≤ π), and; φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).
It is used to encode and deliver the effect of a spherical, 360-degree image to viewers such as needed for 360-degree videos and for virtual reality. A 360 video projection is a specialized form of a map projection, with characteristics tuned for the efficient representation, transmission, and display of 360° fields of view.
For premium support please call: 800-290-4726 more ways to reach us
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.