When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following: If AC is a diameter of a circle, then: If B is inside the circle, then ∠ ABC > 90° If B is on the circle, then ∠ ABC = 90° If B is outside the circle, then ∠ ABC < 90°.

  4. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle (that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

  5. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A {\displaystyle A} , or the excenter of A {\displaystyle A} . [ 3 ]

  6. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

  7. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle. In geometry , the incenter of a triangle is a triangle center , a point defined for any triangle in a way that is independent of the triangle's placement or scale.

  8. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    the inradius r (radius of the circle inscribed in the triangle, tangent to all three sides), the exradii r a, r b, and r c (each being the radius of an excircle tangent to side a, b, or c respectively and tangent to the extensions of the other two sides), and the circumradius R (radius of the circle circumscribed around the triangle and passing ...

  9. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    Then, the image of the -excircle under is a circle internally tangent to sides , and the circumcircle of , that is, the -mixtilinear incircle. Therefore, the A {\displaystyle A} -mixtilinear incircle exists and is unique, and a similar argument can prove the same for the mixtilinear incircles corresponding to B {\displaystyle B} and C ...