Search results
Results From The WOW.Com Content Network
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is c (OsO 4 ) = 5.1 kg/L / 254.23 g/mol = 20.1 mol/L. A typical protein in bacteria , such as E. coli , may have about 60 copies, and the volume of a bacterium is about 10 −15 L.
In biology, the unit "%" is sometimes (incorrectly) used to denote mass concentration, also called mass/volume percentage. A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume).
Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte (the ion being analyzed) based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative ...
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1]
Gas stoichiometry calculations solve for the unknown volume or mass of a gaseous product or reactant. For example, if we wanted to calculate the volume of gaseous NO 2 produced from the combustion of 100 g of NH 3, by the reaction: 4 NH 3 (g) + 7 O 2 (g) → 4 NO 2 (g) + 6 H 2 O (l) we would carry out the following calculations:
In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration) or mass ratio (see stoichiometry). [1]
Isothermal conditions are assumed, and mixing prevents concentration gradients as reactant concentrations decrease and product concentrations increase over time. [4]: 40–41 Many chemistry textbooks implicitly assume that the studied system can be described as a batch reactor when they write about reaction kinetics and chemical equilibrium ...