Search results
Results From The WOW.Com Content Network
Perfect square dissection, a dissection of a geometric square into smaller squares, all of different sizes Perfect square trinomials , a method of factoring polynomials Topics referred to by the same term
Visualization of 6 as a perfect number Logarithmic graph of the number of digits of the largest known prime number by year, nearly all of which have been Mersenne primes Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory .
This page was last edited on 1 November 2008, at 06:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .
The effect has been to fold up the u 4 term into a perfect square: (u 2 + a) 2. The second term, au 2 did not disappear, but its sign has changed and it has been moved to the right side. The next step is to insert a variable y into the perfect square on the left side of equation , and a corresponding 2y into the coefficient of u 2 in the
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8. The difference between 1 and any higher odd perfect square always is eight times a triangular number, while the difference between 9 and ...