When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In this simple example, we can easily see from the plot that y has a non-linear relationship with x (and might perhaps guess that y varies with the square of x). However, in general there will be multiple independent variables, and the relationship between y and these variables will be unclear and not easily visible by plotting. We can use MARS ...

  3. Segmented regression - Wikipedia

    en.wikipedia.org/wiki/Segmented_regression

    Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions. The boundaries between the segments are breakpoints.

  4. Multinomial probit - Wikipedia

    en.wikipedia.org/wiki/Multinomial_probit

    Some examples: The observed outcomes might be "has disease A, has disease B, has disease C, has none of the diseases" for a set of rare diseases with similar symptoms, and the explanatory variables might be characteristics of the patients thought to be pertinent (sex, race, age, blood pressure , body-mass index , presence or absence of various ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    One method conjectured by Good and Hardin is =, where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable. [24] For example, a researcher is building a linear regression model using a dataset that contains 1000 patients ().

  6. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    As with other types of regression, there is no need for the independent variables to be statistically independent from each other (unlike, for example, in a naive Bayes classifier); however, collinearity is assumed to be relatively low, as it becomes difficult to differentiate between the impact of several variables if this is not the case. [5]

  7. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    The goal of polynomial regression is to model a non-linear relationship between the independent and dependent variables (technically, between the independent variable and the conditional mean of the dependent variable). This is similar to the goal of nonparametric regression, which aims to capture non-linear regression relationships.

  8. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.