Search results
Results From The WOW.Com Content Network
Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O 2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. [1] In aerobic organisms undergoing respiration, electrons are shuttled to an electron transport chain, and the final electron ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
However, some anaerobic organisms, such as methanogens are able to continue with anaerobic respiration, yielding more ATP by using inorganic molecules other than oxygen as final electron acceptors in the electron transport chain.
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
Anaerobic respiration differs from aerobic respiration in that it uses an electron acceptor other than oxygen in the electron transport chain. Examples of alternative electron acceptors include sulfate, nitrate, iron, manganese, mercury, and carbon monoxide. [8] Fermentation differs from anaerobic respiration in that the pyruvate generated from ...
[1] [2] In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. [1] Aerobic respiration has the advantage of yielding more energy (adenosine triphosphate or ATP) than fermentation or anaerobic respiration, [3] but obligate aerobes are subject to high levels of oxidative stress. [2]
In aerobic respiration, oxygen serves as the recipient of electrons from the electron transport chain. Aerobic respiration is thus very efficient because oxygen is a strong oxidant. Aerobic respiration proceeds in a series of steps, which also increases efficiency - since glucose is broken down gradually and ATP is produced as needed, less ...
Alternative Electron Transport Chain to move electrons to outer membrane of Geobacter Sulfurreducens. While the exact process in which a cell will reduce an extracellular acceptor will vary from species to species, methods have been shown to involve the use of an oxidoreductase pathway that will transport electrons to the cell membrane that is ...