When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center .

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = ⁠ √ 8φ+7 / 2 ⁠ = ⁠ √ 11+4 √ 5 / 2 ⁠ ≈ 2.233.

  5. Carnot's theorem (inradius, circumradius) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem_(inradius...

    where r is the inradius and R is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment DX (X = F, G, H) lies completely outside the triangle. In the diagram, DF is negative and both DG and DH are positive. The theorem is named after Lazare Carnot (1753–1823).

  6. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    Euler's theorem: = | | = In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  7. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    The circumradius R and the inradius r satisfy the inequality which was proved by L. Fejes Tóth in 1948. [19] It holds with equality only when the two circles are concentric (have the same center as each other); then the quadrilateral is a square. The inequality can be proved in several different ways, one using the double inequality for the ...

  8. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    In pathophysiology there is some shapes of well-circumscribed histopathological features like the phyllodes tumor and medullary breast carcinoma.

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p. 73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − ⁠ 1 / 4 ⁠ ns 2, where s is the side length and R is the ...