Search results
Results From The WOW.Com Content Network
At higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, where the gas and liquid properties become identical. The boiling point cannot be increased beyond the critical point.
This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. [1] Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation. [2]
The normal boiling point is the boiling point at atmospheric pressure, but it can also be reported at higher and lower ... Pressure of a component gas in a ...
Liquid nitrogen's efficiency as a coolant is limited by the fact that it boils immediately on contact with a warmer object, enveloping the object in an insulating layer of nitrogen gas bubbles. This effect, known as the Leidenfrost effect, occurs when any liquid comes in contact with a surface which is significantly hotter than its boiling point.
One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone.
In terms of chemical potential, at the boiling point, the liquid and gas phases have the same chemical potential. Adding a nonvolatile solute lowers the solvent’s chemical potential in the liquid phase, but the gas phase remains unaffected. This shifts the equilibrium between phases to a higher temperature, elevating the boiling point.
At elevated altitudes, any cooking that involves boiling or steaming generally requires compensation for lower temperatures because the boiling point of water is lower at higher altitudes due to the decreased atmospheric pressure. The effect starts to become relevant at altitudes above approximately 2,000 feet (610 m).
A McCabe–Thiele diagram for the distillation of a binary (two-component) feed is constructed using the vapor-liquid equilibrium (VLE) data—which is how vapor is concentrated when in contact with its liquid form—for the component with the lower boiling point. Figure 1: Typical McCabe–Thiele diagram for distillation of a binary feed