Search results
Results From The WOW.Com Content Network
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
This page lists examples of the orders of magnitude of molar concentration. Source values are parenthesized where unit conversions were performed. M denotes the non-SI unit molar: 1 M = 1 mol/L = 10 −3 mol/m 3.
Because a dalton, a unit commonly used to measure atomic mass, is exactly 1/12 of the mass of a carbon-12 atom, this definition of the mole entailed that the mass of one mole of a compound or element in grams was numerically equal to the average mass of one molecule or atom of the substance in daltons, and that the number of daltons in a gram ...
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1]
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Specific volume is commonly applied to: Molar volume; Volume (thermodynamics) Partial molar volume; Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume ...
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa