Search results
Results From The WOW.Com Content Network
Another alternative to RLHF called Direct Preference Optimization (DPO) has been proposed to learn human preferences. Like RLHF, it has been applied to align pre-trained large language models using human-generated preference data. Unlike RLHF, however, which first trains a separate intermediate model to understand what good outcomes look like ...
Lemke's algorithm; Level-set method; Levenberg–Marquardt algorithm; Lexicographic max-min optimization; Lexicographic optimization; Limited-memory BFGS; Line search; Linear-fractional programming; Lloyd's algorithm; Local convergence; Local search (optimization) Luus–Jaakola
Pattern search (also known as direct search, derivative-free search, or black-box search) is a family of numerical optimization methods that does not require a gradient. As a result, it can be used on functions that are not continuous or differentiable. One such pattern search method is "convergence" (see below), which is based on the theory of ...
Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.
It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [ 1 ] on problems that can be solved by alternative methods.
Random optimization (RO) is a family of numerical optimization methods that do not require the gradient of the optimization problem and RO can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods.
From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.