When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Paper bag problem - Wikipedia

    en.wikipedia.org/wiki/Paper_bag_problem

    A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [15] [16] de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]

  4. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    Rectangular cuboid: it has six rectangular faces (also called a rectangular parallelepiped, ... A formula to compute the volume of an n-parallelotope P in ...

  5. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    Some sources also require that each of the faces is a rectangle (so each pair of adjacent faces meets in a right angle). This more restrictive type of cuboid is also known as a rectangular cuboid, right cuboid, rectangular box, rectangular hexahedron, right rectangular prism, or rectangular parallelepiped. [5] Polyhedron

  6. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    A right rectangular prism (with a rectangular base) is also called a cuboid, or informally a rectangular box. A right rectangular prism has Schläfli symbol { }×{ }×{ }. A right square prism (with a square base) is also called a square cuboid, or informally a square box. Note: some texts may apply the term rectangular prism or square prism to ...

  7. Minimum bounding box algorithms - Wikipedia

    en.wikipedia.org/wiki/Minimum_bounding_box...

    In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...

  8. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid is a convex polyhedron with six rectangle faces. The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are congruent. [2] By definition, this makes it a right rectangular prism. Rectangular cuboids may be referred to colloquially as "boxes" (after the physical object).

  9. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest packing uses approximately 74% of the volume.